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Abstract
In this talk I will discuss recent joint work (with N. Reshetikhin) defining
invariants JN of knot (and link and tangle) exteriors with flat sl2 con-
nections. The construction is via a geometric version of the Reshetikhin-
Turaev construction: it is algebraic and relies on the representation
theory of quantum groups. Here I will instead focus on the properties of
these invariants and explain why I think they are a good candidate for
quantum Chern-Simons theory with noncompact gauge group SL2(C).
I will also discuss a connection with (and a generalization of) the Volume
Conjecture.



1. What is qantum Chern-Simons theory? 1

[Wit89] E.Witten, “Quantum field theory and
the Jones polynomial”

1. What is qantum Chern-Simons theory?

Let G be a Lie group, real or complex, with Lie algebra g. (We will always take G = SU2 or
SL2(C).) Let M be a closed 3-manifold. We can identify a connection on a principal G-bundle
overM with a g-valued 1-form A on M , and we define its Chern-Simons invariant by

CS(A) =
1

C

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
for an appropriate constant C depending on G.

One can show that under gauge transformations A → A′ we have (for the right value of C)

CS(A′) = CS(A) + 2πk, k ∈ Z

so
I(A) = eiCS(A)

is well-defined under gauge transformations. In particular when A is flat I depends only on
the holonomy, so it gives a function on the character variety ofM (the space of representations
ρ : π1(M) → G modulo conjugation).

We want to understand the quantum field theory with action CS. This means considering the
path integral/partition functions

Zk(M) =

∫
A∈Ω1(M,g)

eikCS(A)DA

This is a formal object: it is difficult or impossible to assign a measure D to an infinite-
dimensional manifold Ω1(M, g) that makes this integral exist. (Here k is an integer called the
level.)

We can use the path integral as a heuristic to define a collection of related topological invariants
called a topological quantum field theory (TQFT):

• A closed manifold M gets a complex number Zk(M).

• A closed surface Σ gets a vector space Zk(Σ).

• A cobordism Y : Σ0 → Σ1 gets a linear map Zk(Y ) : Zk(Σ0) → Zk(Σ1) respecting
composition

• Disjoint unions become tensor products

We can also allow (oriented, framed) knots and links inside M starting and ending on the
various boundary components.

Famously Witten showed [Wit89] (at a physical level of rigor) how to interpret quantum
Chern-Simons theory as a TQFT Zk containing (the evaluation at certain roots of unity of)
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[RT91] N. Reshetikhin and V. G. Turaev, “In-
variants of 3-manifolds via link polynomials
and quantum groups”. doi
1 Witten’s approach can be made rigorous
(at least in some cases) via geometric quan-
tization of moduli spaces of flat connections
on surfaces, but it is technically difficult and
only appeared later.
2 Part of the data of a TQFT are representa-
tions of the mapping class groups of all (ori-
ented) surfaces, in particular of the modular
group SL2(Z) = Mod(T 2).

3 Turaev calls these homotopy quantum field
theories [Tur10].

[Yos85] T. Yoshida, “The η-invariant of hyper-
bolic 3-manifolds”. doi

the Jones polynomial and related invariants: the colored Jones polynomials are various levels
of su2, the HOMFLY-PT polynomial is suN , and so on. The vector space Zk(Σ) assigned to a
surface Σ arises from geometric quantization of the moduli space X(Σ) of flat connections on
Σ; because we are using a compact group X(Σ) has finite (symplectic) volume, so Zk(Σ) is
finite-dimensional.

Soon afterwards Reshetikhin and Turaev showed [RT91] how to rigorously construct Zk using
algebraic methods.1 They explain how to construct a TQFT from an algebraic object called a
modular tensor category.2 One can construct these using a quantum group Uq(g), a q-analogue
of the universal enveloping algebra of g. For q a root of unity a modification of the category of
Uq-modules gives the required category. The order of the root of unity is related to the level k.

This is the approach we take. The Reshetikhin-Turaev construction starts from links in S3

and uses surgery along these to extend to the general case. For SL2(C) we have constructed
invariants of link (exteriors) in S3; I expect the extension to general manifolds via surgery will
work but this is not done yet.

2. Complex Chern-Simons

We want to pass from the well-understood case G = SU2 to the noncompact, complex gauge
group SL2(C). Complex quantum Chern-Simons is not pinned down fully even by physics
standards (as far as I know) and it is likely there are multiple reasonable answers for what it
is. One significant issue is that because SL2(C) is noncompact we expect the vector spaces
assigned to surfaces to be infinite dimensional. However, it seems that the full theory is graded
by a choice of background flat connection:

Z(Y ) =
⊕

ρ∈X(Y )

Z(Y, ρ)

with finite-dimensional pieces. In particular, we expect not a TQFT but a geometric quantum
field theory3 assigning invariants to Y plus a choice of (gauge class of) flat connection, i.e. of
representations ρ into SL2(C) modulo conjugation. We call the space of these the character
variety X(Y ) of Y .

To understand our quantum invariants it will be helpful to know a few more things about the
ordinary SL2(C) Chern-Simons invariant, which we normalize so

CS(A) ∈ C/(2π)2iZ so I(A) = eCS(A)/2π ∈ C×

When A is flat we can think of I(A) as a conjugation-invariant function of the holonomy
ρ = Hol(A) : π1(M) → SL2(C). Since Isom(H3) = PSL2(C), ρ determines a (possibly
degenerate) metric g of negative curvature onM , and it is a theorem of Yoshida [Yos85] that

CS(ρ) = Vol(g) + iCSsu2
(g)

where the second term is the Chern-Simons invariant of the su2 connection corresponding
to the frame field of g. We know the hyperbolic volume is a strong invariant, so we hope the
same is true for its quantization.

https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/BF01388583
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[KK93] P. Kirk and E. Klassen, “Chern-Simons
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tori and the circle bundle over the represen-
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4 This discussion works just as well for ar-
bitrary 3-manifolds with boundary compo-
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5 The definition still works for links, but
for a technical reason we need to change
normalization to make the invariant well-
defined, and in this normalization the discus-
sion about vector bundles doesn’t quite work
for boundary-parabolic representations.

For manifolds with boundary there are boundary conditions to deal with, but for torus boundary
components they are not too hard to handle [KK93]. Let Y = S3 \ ν(K) be a knot exterior,
for notational simplicity.4 ∂(Y ) = T 2 so π1(∂Y ) ∼= Z2 is abelian. Choosing a meridian m and
longitude l gives a basis, and for representation ρ : π1(Y ) → SL2(C) the matrices ρ(m) and
ρ(l) have a common eigenline (generically, two). A choice of eigenline is called a decoration of
ρ. The decoration determines a basis with

ρ(m) =

[
m ∗
0 m−1

]
and ρ(m) =

[
ℓ ∗
0 ℓ−1

]
and in particular gives preferred eigenvalues m, ℓ of m, l.

Any flat connection is gauge-equivalent to a constant one µdx+λdy near the boundary, where
eµ = m, eλ = ℓ. We call µ, λ a log-decoration of ρ. The Chern-Simons invariant does depend
on the log-decoration, but in a simple way:

I(Y, ρ, µ+ 2πia, λ+ 2πib) = eaλ−µb I(Y, ρ, µ, λ)

Identifying the log-decorations with cohomology classes s, s′ we can write this as

I(Y, ρ, s′) = e⟨s
′−s,s⟩ I(Y, ρ, s)

for the pairing induced by the homology intersection pairing.

We can give this a more abstract definition. The space of decorated SL2(C) representations
of π1(T

2) modulo conjugation (the decorated character variety) Xδ(T 2) is C× × C×, with
coordinates (m, ℓ) as above. We can define a line bundle E over Xδ(T 2) whose fiber over
(m, ℓ) is C-valued functions of logarithms µ, λ transforming like I does above, and then we
can think of I as taking values in the pullback of E to the decorated representation (in fact,
character) variety of Y .

3. Quantum invariants

Our invariants JN come from a modification of the Reshetikhin-Turaev construction. The
original construction comes from interpreting a braid (or tangle, more generally) diagram as a
linear map. A strand is assigned a vector space V , parallel strands to tensor products of the V s,
and a crossing to a linear map

c : V ⊗ V → V ⊗ V

satisfying braid relations. One can obtain such a vector space as a module over the quantum
group Uq(g). For generic q the representation theory of Uq is just like for ordinary Lie algebras:
we can classify everything in terms of highest weights. If V is (the analogue of) the defining
rep of sl2 we get the Jones polynomial; if it is a higher-dimensional one we get colored Jones
polynomials, and so on. We do a G-graded version of this, with the gradings corresponding to
holonomies.
Theorem 1 (CMS, Reshetikhin). For each integer N ≥ 2 there is an invariant

JN (Y, ρ, µ, λ)

https://doi.org/10.1007/BF02096952
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of a knot exterior Y and a log-decorated representation ρ : Y → SL2(C).5 It depends on the
log-decoration as

JN (Y, ρ, µ+ 2πiNa, λ+ 2πib) = e
1
N (µb−Naλ)JN (Y, ρ, µ, λ)

We think ofJN as a twisted or nonabelian version of the (colored) Jones polynomial. Specifically,
when ρ is the trivial representation we recover the N th colored Jones polynomial evaluated at
q = −ξ−1, ξ = eπi/N , also known as the Kashaev invariant [Kas95; Kas97; MM01].6 ⌟

Note that there is now a dependence on the class of µ modulo 2πiN . We can think of JN

as taking values in a rank N vector bundle: given ρ the values on any log-decoration are
determined by the N -component vector

JN (µ),JN (µ+ 2πi), . . . ,JN (µ+ 2πi(N − 1)).

This passage from the line bundle where I is valued to the related higher-rank vector bundle
where JN is valued is natural in the context of quantization.

We are still studying what this invariant really means. We do know it is nontrivial:
Theorem 2 (CMS). The product of theN = 2 invariant and the value on the mirror image knot

J2(Y, ρ, s)J2(Y , ρ, s) = τ(Y, ρ)K(s)

is the Reidemeister torsion of Y twisted by ρ times a simple normalization factor depending
only on the log-decoration. ⌟

Proof. The hard part of this theorem is the main result of [McP22]. Determining the normaliza-
tion factor K is straightforward after that.

I will now describe how to define JN . Due to work of Kac and de Concini [DK90] it is
known that for q = ξ = eπi/N a root of unity Uξ(sl2) has a large central subalgebra Z0. It
is a commutative Hopf algebra, which means it is the algebra of functions on an algebraic
group, which we call SL2(C)∗. This group is closely related to SL2(C) (they are birational, for
example). Furthermore by Schur’s Lemma simple Uξ-modules are graded by SL2(C)∗. The
grading encodes the SL2(C) representation ρ of the knot complement [KR05].

We can now try to repeat the RT construction in a SL2(C)∗-graded way. The hard part is
defining the braiding, which is now a map V1 ⊗ V2 → V2′ ⊗ V1′ between modules in different
gradings, so we really need a family of braidings parametrized by the coordinates coming from
Z0. These coordinates are geometrically natural: they turn out to be the (deformed) Ptolemy
coordinates of the octahedral decomposition of the tangle complement. Usually the braiding
would be given by the action of the universal R-matrix of Uq , but it doesn’t converge! We can
still extract a projective (family of) braidings c̃ but for useful invariants we need to lift them to
a genuine braiding.

To accomplish this we solve for the matrix coefficients explicitly by using a nonstandard presen-
tation of Uξ coming from quantum cluster algebras. Using this presentation we can explicitly

https://arxiv.org/abs/q-alg/9504020
https://doi.org/10.1142/S0217732395001526
https://arxiv.org/abs/q-alg/9601025
https://doi.org/10.1023/A:1007364912784
https://arxiv.org/abs/math/9905075
https://doi.org/10.1007/bf02392716
https://arxiv.org/abs/2005.01133v3
https://doi.org/10.4171/qt/160
https://arxiv.org/abs/1008.1384
https://doi.org/10.1090/pspum/073/2131015
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solve for the braiding, which factors into 4 terms, one for each corner of the crossing. We can
also interpret these as coming from the 4 flips defining the braiding (in terms of triangulations
of surfaces) or the 4 ideal tetrahedra at the crossing in the octahedral decomposition (natural
in hyperbolic geometry). Each term is given by a quantum dilogarithm, a q-analogue of the
dilogarithm

Li2(z) =

∫ z

1

− log(1− t)

t
dt

used in the computation of the classical SL2(C) Chern-Simons invariant I . This function has
branch cuts corresponding to both log z and log(1− z) and to compute I we need to make
coherent choices of branches of these logarithms; Neumann explained how to do this [Neu04].

These logarithms also show up in the quantum case: in order to compute the matrix coefficients
we need to choose a number of N th roots. These are local, not global choices (they depend
on the choice of a knot diagram) and we then need to to check our answer is independent of
these or at least depends in a simple way. This problem is directly analogous to the algebraic
computation of the classical Chern-Simons invariant (via the method of Neumann), and I was
only able to solve it by understanding this analogy. Once this connection is made one can show
that the braidings are either independent of these choices, or transform in a way corresponding
to the log-decoration dependence.

Another way to say this: When computing the SL2(C) Chern-Simons invariant in terms of
a triangulation one needs to keep track of the boundary conditions for the flat connection.
There is a framework for doing this in terms of flattenings [Neu04] via the Ptolemy coordinates
[Zic09]. While there are not (yet) any explicit flat connections in the construction of JN the
flattenings and Ptolemy coordinates show up in an essential way.

4. State integrals and the volume conjecture

Another connection to complex Chern-Simons theory comes from the volume conjecture. Since
Kashaev’s invariant comes from JN evaluated at the trivial representation,7 we can state the
complexified volume conjecture as:
Conjecture 1 (Kashaev, Murakami). Let Y the exterior be a hyperbolic knot in S3 and ρhyp (a
lift of) its hyperbolic structure. Then there is a polynomial p (depending on Y ) so that

lim
N→∞

JN (Y, 1) ∼ p(N1/2) I(ρhyp)N

i.e.
lim

N→∞
logJN (Y, 1) ∼ N

2π
(Vol(g) + iCSsu2

(g)) + lower-order terms

One can be precise about what the lower-order terms are. ⌟

This conjecture is known for hyperbolic knots up to 7 crossings. Here we are writing the
conjecture in terms of the value of JN at a trivial flat connection, butit can be defined entirely
algebraically [Kas97] and in terms of colored Jones polynomials [MM01]. As such it is surprising
because it says that an invariant with an entirely algebraic definition can determine the

https://arxiv.org/abs/math/0307092
https://doi.org/10.2140/gt.2004.8.413
https://arxiv.org/abs/0710.2049
https://doi.org/10.1215/00127094-2009-058
https://arxiv.org/abs/q-alg/9601025
https://doi.org/10.1023/A:1007364912784
https://arxiv.org/abs/math/9905075
https://doi.org/10.1007/bf02392716
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[Yok00] Y. Yokota, “On the volume conjecture
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8 In the literature this is usually called a “po-
tential” but I think “action” is more accurate.

hyperbolic volume. Because of this the conjecture would show that finite-type invariants detect
the unknot.

It has been known for a while that the Volume Conjecture has something to do with complex
Chern-Simons theory. Here’s a heuristic version of the argument [Yok00].

An ideal hyperbolic tetrahedron is one with geodesic edges and its vertices on the boundary
at infinity CP 1 = ∂H of hyperbolic space. Up to congruence these are classified by a shape
parameter z ∈ CP 1, which is the cross-ratio of the vertices. When the tetrahedron is geometri-
cally nondegenerate z ∈ C \ {0, 1}. Given a triangulation of Y one can consider the space T
of (logarithms of) shape parameters of the triangulation. When these satisfy gluing equations
on the edges the tetrahedra give a coherent hyperbolic structure on Y . One can write down an
action8 S : T → C on this space (which is roughly the Chern-Simons functional) whose critical
points are solutions of the gluing equations (i.e. flat connections). The function is assembled
from dilogarithms.

In many cases one can show that the Kashaev invariant is given by a contour integral over this
space:

JN (Y, 1) ∼
∫
Γ

eNS(t⃗)dt⃗

Because ρhyp maximizes ℜS among all critical points the Volume Conjecture comes down to

1. turning the Kashaev invariant into an integral over the parameter space T, and

2. showing that this integral is dominated by the saddle point contributions of S.

We can do 1 in fairly general circumstances for JN .
Theorem 3 (CMS). Let Y be the exterior of a knotK with diagramD. Then there is a function
SN : T → C so that for any non-pinched representation ρ : π1(Y ) → SL2(C),

JN (Y, ρ, s) =
∑
n⃗∈Zk

Ns

∫
[0,1]k

eN[SN (β⃗/N+t⃗)+2πi⃗t·⃗k]dt⃗

for some s. Here the point β⃗ (but not SN ) depends on ρ, s. Furthermore SN → S converges
pointwise to the classical action. ⌟

Proof. It is immediate from the definition of JN that one has

JN (Y, ρ, s) = Ns′
∑
n⃗∈Zk

eN[SN (β⃗/N+n⃗/N)]dt⃗

for a function SN assembled from quantum dilogarithms. This function is continuous (mero-
morphic, in fact!) so we can take its Fourier series.

Conjecture 2. For any representation ρ one has

lim
N→∞

JN (Y, ρ) ∼ p(N1/2) I(ρhyp)N . ⌟

https://arxiv.org/abs/math/0009165
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Evidence. As N → ∞ the dependence β⃗/N on the initial representation ρ drops out, so the
asymptotics only depend on SN . This is converging to S (although not uniformly on its whole
domain...) so the integral should be dominated by the saddle point asymptotics as before.

The sum over integers is natural and even solves some problems. The gluing equations involve
products of things being 1, so the logarithmic ones have a 2πi ambiguity having to do with
branches of logarithms, and this sum is (roughly) over all possible branches. Being “non-
pinched” is a technical non-degeneracy condition (the image of the two Wirtinger generators at
each crossing should not share a fixed point). For reasonable diagrams (including all alternating
diagrams, for example) the hyperbolic structure of a hyperbolic knot is not pinched.

The trivial representation is always pinched, so this theorem does not apply to the Kashaev
invariant. However, it does achieve part (1) of the plan for proving the generalized volume
conjecture. Unfortunately the lack of uniform convergence causes big problems for (2). Perhaps
someone who is better at harmonic analysis than me can solve it.
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