Making the Jones polynomial more geometric

Calvin McPhail-Snyder

September 1, 2021

Australian Geometric Topology Webinar

Acknowledgements

- Thank you to Professor Jessica Purcell for inviting me to give this talk.
- Various parts of this research program are due to:
 - C Blanchet
 - KC Chen
 - R Kashaev
 - N Geer
 - S Morrison
 - B Patureau-Mirand
 - N Reshetikhin
 - N Snyder
- In particular, I reference a paper by myself, Chen, Morrison, and Snyder.
- Turaev has been working on some similar ideas, but in a different, more algebraic direction.

- Quantum invariants like the Jones polynomial are defined in an algebraic way.
- However, there is now a lot of interest in what they say about the geometry of knots and manifolds.
- I want to talk about a research program to address these questions and discuss some examples of these more geometric quantum invariants
- First: a reminder about what I mean by "algebraic".

Quantum invariants

• A knot invariant is a function

 $\{knots\} \rightarrow numbers, polynomials, etc.$

- For our purposes, a quantum invariant is a topological invariant constructed using the representation theory of quantum groups.
- Generally quantum invariants appear as part of topological quantum field theories (TQFTs).

Quantum \mathfrak{sl}_2

 $\mathcal{U}_q = \mathcal{U}_q(\mathfrak{sl}_2)$ is an algebra over $\mathbb{C}[q, q^{-1}]$ that we can think of as a q-analogue of the universal enveloping algebra of \mathfrak{sl}_2 . For q not a root of unity, it acts a lot like \mathfrak{sl}_2 . In particular, there is one¹ representation of dimension $N = 1, 2, \ldots$ which we call V_N .

Let's focus on the 2-dimensional representation V_2 for now.

¹Well, two, but they are almost identical

- The Jones polynomial can be defined in terms of a certain braid group representation \mathcal{V}_2 .
- Let β be a braid on on b strands.
- We think of $\mathcal{V}_2(\beta)$ as a map $V_2^{\otimes b} \to V_2^{\otimes b}$ of tensor powers of V_2 .
- To define V₂(σ): V₂ ⊗ V₂ → V₂ ⊗ V₂, need a linear map satisfying the braid relation. (σ is a braid generator.)
- Explicitly $\mathcal{V}_2(\sigma)$ is a 4 × 4 matrix with entries in $\mathbb{C}[q, q^{-1}]$.

Example: the Jones polynomial

Key idea

The braiding $\mathcal{F}(\sigma)$ is given by the action of the *universal R-matrix*² $\mathbf{R} \in \mathcal{U}_q \otimes \mathcal{U}_q$:

$$\mathcal{F}(\sigma)(x) = \tau(\mathbf{R} \cdot x)$$

where $\tau(v \otimes w) = w \otimes v$.

Can explicitly compute the action of R. Leads to skein relation

which can be used to define the Jones polynomial without using quantum groups at all.

²Actually it's in a sort of completion of $\mathcal{U}_q \otimes \mathcal{U}_q$. This will come up later.

To compute the Jones polynomial $V_2(L)$ of a link L:

- Represent L as the closure of a braid β on b strands
- Compute the $2^b \times 2^b$ matrix $\mathcal{V}_2(\beta)$
- Its (quantum) trace is a Laurent polynomial $V_2(L)$ in q^2
- This is an invariant³ of *L* called the Jones polynomial

This is an example of the Reshetikhin-Turaev construction.

³Modulo some technicalities about framings that are not important here.

This process was very algebraic. I used words like:

- quantum group (a *q*-analog of a Lie algebra/group)
- trace
- representation (of a group/algebra)

I did not use more topological/geometric ideas like

- homology/fundamental groups
- essential surfaces
- geometrization

However, all this algebra still knows about geometry!

• We can repeat the Resethikin-Turaev construction defining V₂(*L*) with any representation of U_q (or of any quantum group.)

Definition

The quantum invariant assigned to a link L by the N-dimensional irrep V_N of U_q is the *N*th colored Jones polynomial $V_N(L)$.

• We can do this diagrammatically in terms of cables of links, or by using *Jones-Wenzl projectors*

We are most interested in particular values for knots K.

Set $\xi = \exp(\pi i/N)$ and normalize so that $V_N(\text{unknot}) = 1$.

Definition

The complex number

 $J_N(K) = V_N(K)|_{q=\xi}$

is called the Nth quantum dilogarithm of K.

Why the name? We will explain later.

Figure-eight knot

Set $\{k\} = \xi^k - \xi^{-k}$. Then

$$J_N(4_1) = \sum_{j=0}^{N-1} \prod_{k=1}^j \{N-k\}\{N+k\}.$$

- Computing closed formulas like this is hard!
- If K is presented as the closure of a braid on b strands, then computing J_N(K) involves the trace of a N^b × N^b matrix.

- The quantum dilogarithm (and things like it) are algebraic: coming from representation theory.
- What does it mean that $J_N(4_1) = \sum_{j=0}^{N-1} \prod_{k=1}^j \{N-k\} \{N+k\}$?

Geometric connections

Theorem

$$2\pi \lim_{N \to \infty} \frac{\log |J_N(4_1)|}{N} = 2.02988... = Vol(4_1)$$

where Vol(K) is the volume of the complete hyperbolic structure of $S^3 \setminus K$.

Conjecture (Volume conjecture [Kas97; MM01])

For any hyperbolic knot K,

$$2\pi \lim_{N \to \infty} \frac{\log |\mathcal{J}_N(\mathcal{K})|}{N} = \operatorname{Vol}(\mathcal{K}).$$

- There are versions for complex volume, for knots in 3-manifolds, for 3-manifolds...
- In every case where the left-hand limit is known to exist the conjecture holds.

How does J_N know about hyperbolic geometry?

- It's a conjecture, so no one really knows.
- I can now get to the main point of my talk: a program aimed at answering this sort of question.
- Along the way I hope we can define some new, even better knot invariants.

Holonomy invariants

- To describe geometry of a topological space X, pick a (conjugacy class of) representations $\pi_1(X) \to G$ for G a Lie group
- For example, a hyperbolic structure on a 3-manifold X is given by a

$$\rho: \pi_1(X) \to \mathsf{Isom}(\mathbb{H}^3) = \mathsf{PSL}_2(\mathbb{C})$$

usually called the holonomy representation.

- We focus on $X = S^3 \setminus K$ a knot complement and $G = SL_2(\mathbb{C})$.
- Sometimes (especially in physics contexts) we view this data as a flat \mathfrak{sl}_2 -connection on X.

Definition

A SL₂(\mathbb{C})-holonomy invariant of knots gives a scalar $F_{\mathcal{K}}(\rho) \in \mathbb{C}$, where $\rho : \pi_1(S^3 \setminus \mathcal{K}) \to SL_2(\mathbb{C})$. It should depend only on the conjugacy class (gauge class) of ρ .

From now on, we say *holonomy invariant* and assume $G = SL_2(\mathbb{C})$.

Another perspective

A holonomy invariant assigns a function $F_{\mathcal{K}} : \mathfrak{X}(\mathcal{K}) \to \mathbb{C}$ to every knot, where $\mathfrak{X}(\mathcal{K})$ is the SL₂(\mathbb{C})-character variety of \mathcal{K} .

Let's explain that in more detail:

Definition

The SL₂(\mathbb{C})-*representation variety* of a knot K is the space $\mathfrak{R}(K)$ of homomorphisms

$$\rho: \pi_K \to \mathsf{SL}_2(\mathbb{C}).$$

where $\pi_{K} = \pi_{1}(S^{3} \setminus K)$ is the fundamental group of the knot complement.

- It is an algebraic variety (a set cut out of \mathbb{C}^n by polynomial equations)
- Two representations ρ_1, ρ_2 are *conjugate* or *gauge-equivalent* if

$$\rho_1(y) = g\rho_2(y)g^{-1}$$

for all $y \in \pi_K$ and some $g \in SL_2(\mathbb{C})$.

We want to say that conjugate representations are the same:

Definition (Morally correct definition)

The $SL_2(\mathbb{C})$ -character variety of a knot K is

 $\mathfrak{X}({\sf K})=\mathfrak{R}({\sf K})/{\rm conjugation}$

- $\mathfrak{X}(K)$ captures lots of important geometric and topological information about *K*.
- One reason: PSL₂(ℂ) = SL₂(ℂ)/{±1} is the isometry group of hyperbolic 3-space.
- A hyperbolic knot *K* comes with (two) distinguished point(s) of $\mathfrak{X}(K)$ corresponding to the finite-volume hyperbolic structure.

A technical point

• Taking a naive quotient of $\mathfrak{R}(\mathcal{K})$ gives a badly-behaved space (not separable, etc.) Can fix by setting

 $\mathfrak{X}(\mathcal{K}) = \operatorname{Spec}(\operatorname{conjugation-invariant} \text{ functions on } \mathfrak{R}(\mathcal{K}))$ = Spec(characters of SL₂(\mathbb{C}) reps of $\pi_{\mathcal{K}}$) = Spec(algebra generated by trace functions tr_x : $\rho \mapsto \operatorname{tr} \rho(x)$)

hence the name.

- When we do this we throw out indecomposable but reducible ρ. Not usually a big deal: ρ with irreducible image are the most important geometrically.
- If ρ has completely reducible image it factors through the abelianization H₁(S³ \ K) of π_K: good simple examples.

A function $f : \mathfrak{X}(K) \to \mathbb{C}$ is simply a conjugation-invariant function $f : \mathfrak{R}(K) \to \mathbb{C}$

Definition

A SL₂(\mathbb{C})-holonomy invariant F assigns every knot a function

 $F_{K}:\mathfrak{X}(K)\to\mathbb{C}.$

- Equivalently, a holonomy invariant is a function on pairs
 (K, ρ : π_K → SL₂(ℂ)) that depends only on the conjugacy class of ρ.
- Some of our examples use a slight variant (a N-fold cover) of $\mathfrak{X}(K)$
- We can think of ρ ∈ 𝔅(K) as the holonomy of a flat 𝔅𝑔₂-connection, hence the name.

Torsion

The Reidemeister torsion $\tau(K, \rho) = \tau(S^3 \setminus K, \rho)$ depends on K and $\rho \in \mathfrak{R}(K)$. It is gauge-invariant, so we get a function

$$au(K,-):\mathfrak{X}(K)\to\mathbb{C}$$

i.e. a holonomy invariant.

Complex volume

The complex volume of a hyperbolic knot

 $\operatorname{Vol}(K) + i\operatorname{CS}(K) \in \mathbb{C}/i\pi^2\mathbb{Z}$

can be computed by evaluating a certain characteristic class of flat $PSL_2(\mathbb{C})$ -bundles on the finite-volume hyperbolic structure of $S^3 \setminus K$. We can think of this as a holonomy invariant by evaluating that class on other elements of $\mathfrak{X}(K)$.

- K a knot in S^3
- $\pi_K = \pi_1(S^3 \setminus K)$ is finitely generated, say by *meridians*
- All meridians of K are conjugate

Two meridians of the figure-eight knot

Taking the abelian limit

- Before, we mentioned that trivial/abelian reps ρ give ordinary knot invariants.
- Consider the one-dimensional family of representations defined on meridians by

$$\alpha_t(x) = \begin{bmatrix} t & 0 \\ 0 & t^{-1} \end{bmatrix}$$

 The α_t have abelian image and exist for any knot K.

Theorem

$$egin{aligned} & au(\mathcal{K}, lpha_t) =
abla_\mathcal{K}(t)
abla_\mathcal{K}(t^{-1}) \ & =
abla_\mathcal{K}(t)^2 \end{aligned}$$

where ∇_K is the Conway potential of K (up to a constant, the Alexander polynomial).

Proof.

 α_t is reducible, so $\tau(K, \alpha_t)$ factors into two pieces. Each factor is an abelianization map on group rings $\mathbb{Z}[\pi_K] \to \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t, t^{-1}]$. By the usual arguments, this is the abelian Reidemeister torsion/Alexander polynomial.

Takeaway

In general $\mathfrak{X}(K)$ is complicated and depends on K, but for any K $\alpha_t \in \mathfrak{X}(K)$. We can evaluate any holonomy invariant on α_t to get an easier example.

Examples of quantum holonomy invariants

- Key algebra ingredient: representation theory of U_{ξ} for $q = \xi = \exp(\pi i/N)$ or $q = \zeta = \exp(2\pi i/N)$ a root of unity
- The center of \mathcal{U}_ξ is birationally equivalent to (a finite cover of) ${\rm SL}_2(\mathbb{C})$
- In particular there is a family of simple \mathcal{U}_{ξ} -modules indexed by $SL_2(\mathbb{C})$
- Roughly speaking we assign a strand with holonomy $g \in \mathsf{SL}_2(\mathbb{C})$ a module with central character g
- More details after some examples

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and Snyder [Che+21] constructed a holonomy invariant.

Fact

For $g \in SL_2(\mathbb{C})$, write χ_g for the associated central \mathcal{U}_{ζ} -character and ker χ_g the ideal generated by its kernel. \mathcal{U}_{ζ} / ker χ_g is a simple bimodule of dimension N^2 .

(This is not quite right: details later!)

Theorem

By assigning a strand of a knot diagram with holonomy g the module $\mathcal{U}_{\zeta}/\ker \chi_g$, we get a holonomy invariant $\operatorname{KR}(K, \rho)$ of knots. $\operatorname{KR}(K, -)$ is a rational function on a N-fold cover $\mathfrak{X}_N(K)$ of $\mathfrak{X}(K)$.

- Recall that any two meridians of a knot *K* are conjugate (if they match orientation)
- For ρ ∈ 𝔅(K), eigenvalues of ρ(x) for x a meridian are independent of x
- A fractional eigenvalue of ρ is a μ with tr $\rho(x) = \mu^N + \mu^{-N}$

Definition

Points of $\mathfrak{X}_N(K)$ are pairs (ρ, μ) with $\rho \in \mathfrak{X}(K)$ and μ a fractional eigenvalue of ρ .

Immediate that $\mathfrak{X}_N(K) \to \mathfrak{X}(K)$ is an *N*-fold cover.

 $K = 4_1$ longitude meridian

$$\begin{split} \mathfrak{X}(4_1) &= \mathbb{C}[M^{\pm 1}, L^{\pm 1}] / \left\langle (L-1)(L^2 M^4 + L(-M^8 + M^6 + 2M^4 + M^2 - 1) + M^4) \right\rangle \end{split}$$

 $M^{\pm 1}$ are the eigenvalues of the meridian and $L^{\pm 1}$ are the eigenvalues of the longitude. To get $\mathfrak{X}_N(4_1)$, replace M with $\mu^N = M$ (L-1) factor is the *commutative* component and the other is *geometric*. We compute that, for N = 3,

$$\begin{aligned} \mathrm{KR}(\mathcal{K})_{\mathsf{comm}} &= \left(\mu^4 + 3\mu^2 + 5 + 3\mu^{-2} + \mu^{-4}\right)^2 \\ \mathrm{KR}(\mathcal{K})_{\mathsf{geom}} &= 3(\mu^2 + \mu^{-2})(\mu + 1 + \mu^{-1})^3(\mu - 1 + \mu^{-1})^3 \end{aligned}$$

Complete hyperbolic structure of 4₁ complement corresponds to points $\mu = 1, \exp(2\pi i/3), \exp(4\pi i/3)$ on geometric component.

Observation

 $\operatorname{KR}(\mathcal{K})_{\text{geom}}$ vanishes for μ a primitive root of unity. Seems to extend to other knots and odd N for $\zeta = \exp(2\pi i/N)$; does not occur for $\xi = \exp(\pi i/N)$ and N even.

A-polynomial curve

- $\mathfrak{X}(4_1)$ had two components parametrized by M and L
- In general, $\mathfrak{X}(K)$ could have more components and might not be canonically parametrized by M and L
- Commutative component is always parametrized by \boldsymbol{M}
- Restriction to just *M* and *L* gives the *A-polynomial curve*

Theorem (Dunfield [Dun99])

For hyperbolic K, geometric component of $\mathfrak{X}(K)$ is canonically parametrized by M and L.

Corollary

For hyperbolic K, KR(K) is a rational function on the commutative and geometric components of the A-polynomial curve.

In the abstract I promised a holonomy invariant extending the colored Jones polynomial. More precisely:

Goal

A holonomy invariant J_N such that $J_N(\mathcal{K}, \pm 1)$ (the value at the trivial representation) recovers the quantum dilogarithm $J_N(\mathcal{K})$ (colored Jones at a root of unity).

It extends the quantum dilogarithm to $\rho \in \mathfrak{X}_N(K)$ with nonabelian image, so we call J_N the nonabelian quantum dilogarithm.

- The modules V_N for $q = \exp(\pi i/N)$ are associated to the holonomy sending every meridian to $(-1)^{N+1}$.
- Thus, the volume conjecture is about relating $J_N(K, \alpha_{(-1)^{N+1}})$ and hyperbolic volume.
- The value $J_N(K, \rho_{hyp})$ at the complete finite-volume hyperbolic structure should know about the volume
- We might be able to relate their asymptotics via ideas like:
 - analytic continuation,
 - resurgence,
 - AJ conjecture,
 - others?

Defining J_N

Fact

For each (generic) $g \in SL_2(\mathbb{C})$ there are N irreducible \mathcal{U}_{ξ} -modules $V_{g,\mu}$ parametrized by fractional eigenvalues of g. For $g = (-1)^{N+1}$ and $\mu = \xi^{N-1}$ we recover the module V_N defining the colored Jones polynomial.

Theorem (part of my PhD thesis)

There is a holonomy invariant J_N assigning $V_{g,\mu}$ to strands. It is well-defined up to a 2Nth root of unity.

This is an extension of work of Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20]. My improvements are:

- Explicitly computing the braiding matrices
- Working out a more geometric way to describe ρ for link complements

The abelian case

Kashaev's quantum dilogarithm

When $\rho = \alpha_{(-1)^{N+1}}$ is \pm the trivial representation,

```
\mathcal{J}_N(K,\alpha_{(-1)^{N+1}})=J_N(K)
```

is the quantum dilogarithm, i.e. the Nth colored Jones polynomial evaluated at $\exp(2\pi i/N)$.

The Akutsu-Deguchi-Ohtsuki invariant

When $\rho = \alpha_t$ and $t \neq \pm 1$,

$$J_N(K,\alpha_t) = ADO_N(t)$$

is the Nth ADO invariant.

The ADO invariant is a higher-order Alexander polynomial. When N = 2, it is exactly the Conway potential/Alexander polynomial/abelian Reidemeister torsion.

- In this coordinate system we assign *shapes*:
 - a complex number b_i to each segment of a link diagram
 - a meridian eigenvalue m_i to each link component
- Gives $\rho: \pi_1(S^3 \setminus L) \to \mathsf{SL}_2(\mathbb{C})$ when they satisfy a certain set of equations
- These are *exactly* the octahedral gluing equations of Kim, Kim, and Yoon [KKY18].
- Related to an ideal triangulation with four ideal tetrahedra at each crossing

Octahedral decomposition

- Can compute complex volume by evaluating a special function called the *Rogers dilogarithm* on the shape parameters of the tetrahedra
- Kashaev described a matrix analogue called the quantum dilogarithm
- Used it to define a knot invariant which turns out to be the colored Jones at a root of unity (nontrivial to show!)
- The braiding defining J_N uses four quantum dilogarithms, one for each tetrahedron

Quantum hyperbolic invariants

Baseilhac and Benedetti [BB04] constructed *quantum hyperbolic invariants* of 3-manifolds with links inside them via state-sums and triangulations.

- They used quantum dilogarithms, just like in our construction
- Their invariants appear to be closely related to our nonabelian quantum dilogarithm.
- Our version is much more clearly related to the Jones polynomial
- We can also prove a relation with the torsion:

Theorem (Me [McP21])

For any link L and $\rho \in \mathfrak{X}_2(L)$ that does not have 1 as an eigenvalue,

$$J_2(L,\rho)J_2(\overline{L},\rho) = \tau(S^3 \setminus L,\rho)$$

where \overline{L} is the mirror image and τ is the Redemeister torsion twisted by ρ .

Proof idea.

There is a Schur-Weyl duality between the braiding for U_{ξ} defining J_2 and the twisted Burau representation defining τ . Need to use a "quantum double" to get the norm-square on the left hand side.

Constructing quantum holonomy invariants

- I will now give a very rapid overview of some of the algebra used to define these invariants
- Happy to discuss more details if you want to know them!

- Recall that in the RT construction of knot invariants from *U_q* = *U_q*(sl₂), we think about putting a *U_q*-module *V* on each strand of the knot *K*.
- For a pair (K, ρ) , each strand has a meridian x and holonomy $\rho(x) \in SL_2(\mathbb{C})$.
- We want to find a family of modules V_g parametrized by points of $SL_2(\mathbb{C})$.
- Actual answer is a bit more complicated: let's explain why.

Recall that for generic q, U_q -modules are essentially indexed by a single integer (the highest weight), just like for ordinary \mathfrak{sl}_2 . However, for $q = \xi = \exp(\pi i/N)$ a primitive 2Nth root of 1, U_{ξ} -modules are much more interesting.

Theorem

N-dimensional projective simple U_{ξ} -modules are indexed by:

- 1. a (generic) point $g \in SL_2(\mathbb{C})$
- 2. an Nth root μ of an eigenvalue of g

Why?

Central characters

- \mathcal{U}_q has generators $E, F, K = q^H$ (like \mathfrak{sl}_2)
- At $q = \xi$, get central subalgebra $\mathcal{Z}_0 = \mathbb{C}[E^N, F^N, K^{\pm N}]$
- For central characters $\chi: \mathcal{Z}_0 \to \mathbb{C}$,

$$\begin{split} \chi \in \operatorname{Spec} \mathcal{Z}_{0} &\leftrightarrow \left(\begin{bmatrix} \chi(K^{N}) & 0\\ \chi(K^{N}F^{N}) & 1 \end{bmatrix}, \begin{bmatrix} 1 & \chi(E^{N})\\ 0 & \chi(K^{N}) \end{bmatrix} \right) \\ &\leftrightarrow \begin{bmatrix} \chi(K^{N}) & -\chi(E^{N})\\ \chi(K^{N}F^{N}) & \chi(K^{N}) - \chi(K^{N}E^{N}F^{N}) \end{bmatrix} \in \operatorname{SL}_{2}(\mathbb{C}) \end{split}$$

- Action of central Casimir Ω given by Nth root, full center is $\mathcal{Z} = \mathcal{Z}_0[\Omega]/(\text{polynomial relation})$
- Characters $\chi : \mathcal{Z} \to \mathbb{C}$ are in bijection with simple \mathcal{U}_{ξ} -modules.

Factorized groups

*U*_ξ-modules are really graded by the group SL₂(C)* of pairs

$$\begin{aligned} \chi &= (\chi^+, \chi^-) \\ &= \left(\begin{bmatrix} \kappa & 0 \\ \phi & 1 \end{bmatrix}, \begin{bmatrix} 1 & \epsilon \\ 0 & \kappa \end{bmatrix} \right) \end{aligned}$$

- This is birationally equivalent to SL₂(C), but not isomorphic as a group.
- Leads to slightly unusual description of π_K.

- Usual description (Wirtinger presentation) of knot group from a diagram has one generator for each arc.
- We instead want a *groupoid* with two generators for each segment.
- Path above a segment labeled by χ gives $\chi^+,$ path below gives χ^-

Fundamental groupoid

To represent (K, ρ) as a braid closure, decorate segments with characters χ giving holonomies:

The braid action on the χ_i is equivalently given by the rules on the previous slide, or by the braiding on \mathcal{U}_{ξ} . It forms a *biquandle*.

Just like we have braid groups for braids, we can organize these into a groupoid:

Definition

The $SL_2(\mathbb{C})$ -colored braid groupoid $\mathbb{B}_N(SL_2(\mathbb{C}))$ is a category:

objects tuples (χ_1, \ldots, χ_n) of characters $\chi_i : \mathcal{Z}_0 \to \mathbb{C}$ morphisms braids $\beta : (\chi_1, \ldots, \chi_n) \to (\chi'_1, \ldots, \chi'_n)$

Closures of colored braids are links L plus $\rho \in \mathfrak{X}(L)$.

Braid groups

The ordinary braid group is the component with $\chi_1 = \cdots = \chi_n = id$. (Recall a groupoid with one object is a group.) To define a holonomy invariant, we need

- 1. a functor $\mathcal{F} : \mathbb{B}_N(\mathsf{SL}_2(\mathbb{C})) \to \mathcal{U}_{\xi}\text{-}\mathsf{Mod}$ (must satisfy colored Reidemeister moves!)
- 2. an trace on endomorphisms of \mathcal{U}_{ξ} -Mod

Theorem

Given such an \mathcal{F} , the trace of $\mathcal{F}(\beta)$ is an invariant of the closure (L, ρ) of β .

Getting the trace is trickier than normal because of non-semimplicity: need to use *modified dimensions/traces*.

It turns out that, given such a functor \mathcal{F} , the associated invariant is automatically gauge-invariant! Two pictures explain why:

Here D' is gauge-equivalent to D.

Questions?

Bonus: Why is it called a quantum dilogarithm?

• The dilogarithm is

$$L_2(x) = -\int_0^x \frac{\log(1-z)}{z} \, dz$$

and Rogers' dilogarithm is

$$L(x) = L_2(x) + \log(1-x)\log(x)/2.$$

L(x) can be used to compute complex volumes of tetrahedra, hence of manifolds.

• It satisfies the 5-term relation

$$L(x) + L(y) - L(xy) = L\left(\frac{x - xy}{1 - xy}\right) + L\left(\frac{y - xy}{1 - xy}\right)$$

which is related to the 3-2 move on triangulations

• Faddeev and Kashaev showed the q-series

$$\Psi(x) = \prod_{n=1}^{\infty} (1 - xq^n)$$

is a q-analog of L(x) and satisfies a noncommutative 5-term relation.

• The cyclic quantum dilogarithm

$$L(B, A|n) = \prod_{k=1}^{n} (1 - \xi^{2k}B)/A$$

for $A^N + B^N = 1$ is a root-of-unity analogue of $\Psi(x)$.

- By taking a certain singular limit Kashaev defined his quantum dilogarithm invariant.
- By replacing Rogers dilogarithms L(x) with cyclic dilogarithms
 L(B, A|n), Baseilhac and Benedetti defined holonomy invariants B_N for triangulated 3-manifolds with links inside them.
- B_N is constructed as a state-sum, with one function L(B, A|n) for each tetrahedron.

- Even though the definition of J_N appears quite different from B_N , recent computations of the braiding show they are closely related.
- In particular, the braiding defined by \mathcal{J}_N factors into a product of four linear maps, each of which is associated to a tetrahedron in the octahedral decomposition of the knot complement.
- To emphasize the connection with Kashaev's construction and the incorporation of nonabelian ρ ∈ 𝔅_N(K), we used the name nonabelian quantum dilogarithm.

The nonabelian quantum dilogarithm and the torsion

Theorem (C. [McP21])

For any $\rho \in \mathfrak{X}_{2}(K)$,

$$J_2(K,\rho)J_2(\overline{K},\rho) = \tau(K,\rho)$$

where \overline{K} is the mirror image of K.

Comparing

$$\nabla_{\mathcal{K}}(t)\nabla_{\overline{\mathcal{K}}}(t) = \tau(\mathcal{K}, \alpha_t)$$

we think of $J_2(K, \rho)$ as a nonabelian Conway potential. How do we compute the right-hand side? Use the Burau representation. Consider colored braids on *b* strands. Write $\rho = (\chi_1, \ldots, \chi_b)$ for an object of $\mathbb{B}_2(SL_2(\mathbb{C}))$, equivalently a representation

```
\rho: \pi_1(D_b) \to \mathsf{SL}_2(\mathbb{C})
```

where D_b is a *b*-punctured disc. Let β be a braid on *b* stands, i.e. an element of Map $(D_b, \partial D_b)$. As a colored braid, it becomes a morphism $\beta : \rho \to \rho'$.

Definition

The Burau representation is the action on twisted locally-finite homology:

```
\mathcal{B}(\beta) : \mathrm{H}_1(D_b; \rho) \to \mathrm{H}_1(D_b; \rho')
```

induced by the action of β on D_b .

Computing the torsion

Proposition

If (K, ρ) is the closure of β , then

$$\tau(K,\rho) = \frac{\det(1-\mathcal{B}(\beta))}{\det(1-\rho(y))}$$

y is a path around every strand, as above.

To make this a trace, let $\bigwedge \mathcal{B}$ be the action on the exterior algebra of homology. Then

$$\operatorname{str}\left(\bigwedge \mathcal{B}(\beta)\right) = \operatorname{det}(1 - \mathcal{B}(\beta)).$$

Here str is the $\mathbb{Z}/2$ -graded trace: multiply action on degree k part by $(-1)^k$.

We want to understand $\mathcal{J}_2(\beta) : \mathcal{J}_2(\rho) \to \mathcal{J}_2(\rho), \ \rho = (\chi_1, \dots, \chi_b)$. First we need to understand $\mathcal{J}_2(\rho)$. Use:

Proposition

$$\mathcal{J}_2(
ho) = \bigotimes_{i=1}^b V_{\chi_i} \cong X^+ \otimes_{\mathbb{C}} V_{\chi_+} \oplus X^- \otimes_{\mathbb{C}} V_{\chi_-}$$

Here:

- χ_{\pm} are characters corresponding to the total holonomy ho(y)
- there are two because there are two choices $\pm \mu$ of fractional eigenvalue for $\rho(y)$
- Action of $\mathcal{J}_2(\beta)$ factors through *multiplicity spaces* X^{\pm}

Theorem (Me [McP21])

There is a subalgebra \mathfrak{C}_b of $\mathcal{U}_{\varepsilon}^{\otimes b}$ that

- 1. (super)commutes with the image of $\Delta \mathcal{U}$ in the tensor power,
- 2. is isomorphic as a vector space to $\bigwedge \mathcal{B}(\chi_1, \ldots, \chi_b)$,
- 3. such that the braid group action on $\mathfrak{C}_b \subseteq \mathcal{U}_{\varepsilon}^{\otimes b}$ agrees with \mathcal{B} .

Compare Schur-Weyl duality between tensor powers of SL_n and the symmetric group.

Corollary (Wrong)

The $\mathbb{Z}/2$ -graded multiplicity space $X = X^+ \oplus X^-$ is isomorphic to $\bigwedge \mathcal{B}(\rho)$. This is compatible with the braid action, so $\mathcal{J}_2(\beta)$ acts on X by $\bigwedge \mathcal{B}(\beta)$.

The theorem about $\tau(K, \rho)$ would follow immediately, except that this is false!

- The problem is that \mathfrak{C}_b does not act faithfully on $\mathcal{J}_2(\chi_1, \ldots, \chi_n)$.
- Among other reasons, dimensions don't match.
- To fix, consider a "quantum double"

$$\mathcal{T}_2 = \mathcal{J}_2 \boxtimes \overline{\mathcal{J}}_2$$

• Then the theorem works and

$$\begin{aligned} \tau(K,\rho) &= \mathrm{T}_{2}(K,\rho) & (\text{by Schur-Weyl}) \\ &= \mathrm{J}_{2}(K,\rho)\mathrm{J}_{2}(\overline{K},\rho) & (\text{by definition}) \end{aligned}$$

References

- [BB04] Stéphane Baseilhac and Riccardo Benedetti. "Quantum hyperbolic invariants of 3-manifolds with PSL(2, C)-characters". In: Topology 43.6 (Nov. 2004), pp. 1373–1423. DOI: 10.1016/j.top.2004.02.001. arXiv: math/0306280 [math.GT].
- [Bla+20] Christian Blanchet, Nathan Geer, Bertrand Patureau-Mirand, and Nicolai Reshetikhin. "Holonomy braidings, biquandles and quantum invariants of links with SL₂(C) flat connections". In: *Selecta Mathematica* 26.2 (Mar. 2020). DOI: 10.1007/s00029-020-0545-0. arXiv: 1806.02787v1 [math.GT].
- [Che+21] Kai-Chieh Chen, Calvin McPhail-Snyder, Scott Morrison, and Noah Snyder. Kashaev-Reshetikhin Invariants of Links. Aug. 14, 2021. arXiv: 2108.06561 [math.GT].
- [Dun99] Nathan M. Dunfield. "Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds".

In: *Invent. Math.* 136.3 (1999), pp. 623–657. ISSN: 0020-9910. DOI: 10.1007/s002220050321.

- [Kas97] Rinat M Kashaev. "The hyperbolic volume of knots from the quantum dilogarithm". In: Letters in mathematical physics 39.3 (1997), pp. 269–275. arXiv: q-alg/9601025 [math.QA].
- [KKY18] Hyuk Kim, Seonhwa Kim, and Seokbeom Yoon. "Octahedral developing of knot complement I: Pseudo-hyperbolic structure". In: Geometriae Dedicata 197.1 (Jan. 2018), pp. 123–172. DOI: 10.1007/s10711-018-0323-8. arXiv: 1612.02928 [math.GT].
- [KR05] R. Kashaev and N. Reshetikhin. "Invariants of tangles with flat connections in their complements". In: Graphs and Patterns in Mathematics and Theoretical Physics. American Mathematical Society, 2005, pp. 151–172. DOI: 10.1090/pspum/073/2131015. arXiv: 1008.1384 [math.QA].

- [McP21] Calvin McPhail-Snyder. "Holonomy invariants of links and nonabelian Reidemeister torsion". In: Quantum Topology (2021). arXiv: 2005.01133 [math.QA]. Forthcoming.
- [MM01] Hitoshi Murakami and Jun Murakami. "The colored Jones polynomials and the simplicial volume of a knot". In: Acta Mathematica 186.1 (Mar. 2001), pp. 85–104. DOI: 10.1007/bf02392716. arXiv: math/9905075 [math.GT].