Making the Jones polynomial more geometric

Calvin McPhail-Snyder
September 1, 2021
Australian Geometric Topology Webinar

Acknowledgements

- Thank you to Professor Jessica Purcell for inviting me to give this talk.
- Various parts of this research program are due to:
- C Blanchet
- KC Chen
- R Kashaev
- N Geer
- S Morrison
- B Patureau-Mirand
- N Reshetikhin
- N Snyder
- In particular, I reference a paper by myself, Chen, Morrison, and Snyder.
- Turaev has been working on some similar ideas, but in a different, more algebraic direction.

Overview

- Quantum invariants like the Jones polynomial are defined in an algebraic way.
- However, there is now a lot of interest in what they say about the geometry of knots and manifolds.
- I want to talk about a research program to address these questions and discuss some examples of these more geometric quantum invariants
- First: a reminder about what I mean by "algebraic".

Quantum invariants

What is a quantum invariant?

- A knot invariant is a function

$$
\{\text { knots }\} \rightarrow \text { numbers, polynomials, etc. }
$$

- For our purposes, a quantum invariant is a topological invariant constructed using the representation theory of quantum groups.
- Generally quantum invariants appear as part of topological quantum field theories (TQFTs).

Example: the Jones polynomial

Quantum $\mathfrak{s l}_{2}$

$\mathcal{U}_{q}=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is an algebra over $\mathbb{C}\left[q, q^{-1}\right]$ that we can think of as a q-analogue of the universal enveloping algebra of $\mathfrak{s l}_{2}$.
For q not a root of unity, it acts a lot like $\mathfrak{s l}_{2}$.
In particular, there is one ${ }^{1}$ representation of dimension $N=1,2, \ldots$ which we call V_{N}.

Let's focus on the 2-dimensional representation V_{2} for now.
${ }^{1}$ Well, two, but they are almost identical

Example: the Jones polynomial

- The Jones polynomial can be defined in terms of a certain braid group representation \mathcal{V}_{2}.
- Let β be a braid on on b strands.
- We think of $\mathcal{V}_{2}(\beta)$ as a map $V_{2}^{\otimes b} \rightarrow V_{2}^{\otimes b}$ of tensor powers of V_{2}.
- To define $\mathcal{V}_{2}(\sigma): V_{2} \otimes V_{2} \rightarrow V_{2} \otimes V_{2}$, need a linear map satisfying the braid relation. (σ is a braid generator.)
- Explicitly $\mathcal{V}_{2}(\sigma)$ is a 4×4 matrix with entries in $\mathbb{C}\left[q, q^{-1}\right]$.

Example: the Jones polynomial

Key idea

The braiding $\mathcal{F}(\sigma)$ is given by the action of the universal R-matrix ${ }^{2}$ $\mathbf{R} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}:$

$$
\mathcal{F}(\sigma)(x)=\tau(\mathbf{R} \cdot x)
$$

where $\tau(v \otimes w)=w \otimes v$.
Can explicitly compute the action of \mathbf{R}. Leads to skein relation

which can be used to define the Jones polynomial without using quantum groups at all.
${ }^{2}$ Actually it's in a sort of completion of $\mathcal{U}_{q} \otimes \mathcal{U}_{q}$. This will come up later.

Computing the Jones polynomial

To compute the Jones polynomial $V_{2}(L)$ of a link L :

- Represent L as the closure of a braid β on b strands
- Compute the $2^{b} \times 2^{b}$ matrix $\mathcal{V}_{2}(\beta)$
- Its (quantum) trace is a Laurent polynomial $\mathrm{V}_{2}(L)$ in q^{2}
- This is an invariant ${ }^{3}$ of L called the Jones polynomial

This is an example of the Reshetikhin-Turaev construction.
${ }^{3}$ Modulo some technicalities about framings that are not important here.

Algebra \rightarrow topology

This process was very algebraic. I used words like:

- quantum group (a q-analog of a Lie algebra/group)
- trace
- representation (of a group/algebra)

I did not use more topological/geometric ideas like

- homology/fundamental groups
- essential surfaces
- geometrization

However, all this algebra still knows about geometry!

The colored Jones polynomial

- We can repeat the Resethikin-Turaev construction defining $\mathrm{V}_{2}(L)$ with any representation of \mathcal{U}_{q} (or of any quantum group.)

Definition

The quantum invariant assigned to a link L by the N-dimensional irrep V_{N} of \mathcal{U}_{q} is the N th colored Jones polynomial $\mathrm{V}_{N}(L)$.

- We can do this diagrammatically in terms of cables of links, or by using Jones-Wenzl projectors

Value at roots of unity

We are most interested in particular values for knots K. Set $\xi=\exp (\pi i / N)$ and normalize so that $\mathrm{V}_{N}($ unknot $)=1$.

Definition

The complex number

$$
\mathrm{J}_{N}(K)=\left.\mathrm{V}_{N}(K)\right|_{q=\xi}
$$

is called the Nth quantum dilogarithm of K.
Why the name? We will explain later.

Value at roots of unity

Figure-eight knot

$$
\text { Set }\{k\}=\xi^{k}-\xi^{-k} \text {. Then }
$$

$$
\mathrm{J}_{N}\left(4_{1}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\{N-k\}\{N+k\}
$$

- Computing closed formulas like this is hard!
- If K is presented as the closure of a braid on b strands, then computing $\mathrm{J}_{N}(K)$ involves the trace of a $N^{b} \times N^{b}$ matrix.

So far, only algebra

- The quantum dilogarithm (and things like it) are algebraic: coming from representation theory.
- What does it mean that $J_{N}\left(4_{1}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\{N-k\}\{N+k\}$?

Geometric connections

Theorem

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}\left(4_{1}\right)\right|}{N}=2.02988 \ldots=\operatorname{Vol}\left(4_{1}\right)
$$

where $\operatorname{Vol}(K)$ is the volume of the complete hyperbolic structure of $S^{3} \backslash K$.

Conjecture (Volume conjecture [Kas97; MM01])

For any hyperbolic knot K,

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|\mathrm{~J}_{N}(K)\right|}{N}=\operatorname{Vol}(K)
$$

- There are versions for complex volume, for knots in 3-manifolds, for 3-manifolds...
- In every case where the left-hand limit is known to exist the conjecture holds.

How does J_{N} know about hyperbolic geometry?

How does J_{N} know about hyperbolic geometry?

- It's a conjecture, so no one really knows.
- I can now get to the main point of my talk: a program aimed at answering this sort of question.
- Along the way I hope we can define some new, even better knot invariants.

Holonomy invariants

The idea

- To describe geometry of a topological space X, pick a (conjugacy class of) representations $\pi_{1}(X) \rightarrow G$ for G a Lie group
- For example, a hyperbolic structure on a 3 -manifold X is given by a

$$
\rho: \pi_{1}(X) \rightarrow \operatorname{Isom}\left(\mathbb{H}^{3}\right)=\mathrm{PSL}_{2}(\mathbb{C})
$$

usually called the holonomy representation.

- We focus on $X=S^{3} \backslash K$ a knot complement and $G=\mathrm{SL}_{2}(\mathbb{C})$.
- Sometimes (especially in physics contexts) we view this data as a flat $\mathfrak{s l}_{2}$-connection on X.

The idea

Definition

A $\mathrm{SL}_{2}(\mathbb{C})$-holonomy invariant of knots gives a scalar $F_{K}(\rho) \in \mathbb{C}$, where $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$. It should depend only on the conjugacy class (gauge class) of ρ.

From now on, we say holonomy invariant and assume $G=\mathrm{SL}_{2}(\mathbb{C})$.

Another perspective

A holonomy invariant assigns a function $F_{K}: \mathfrak{X}(K) \rightarrow \mathbb{C}$ to every knot, where $\mathfrak{X}(K)$ is the $\mathrm{SL}_{2}(\mathbb{C})$-character variety of K.

Let's explain that in more detail:

The representation variety

Definition

The $\mathrm{SL}_{2}(\mathbb{C})$-representation variety of a knot K is the space $\mathfrak{R}(K)$ of homomorphisms

$$
\rho: \pi_{K} \rightarrow \mathrm{SL}_{2}(\mathbb{C})
$$

where $\pi_{K}=\pi_{1}\left(S^{3} \backslash K\right)$ is the fundamental group of the knot complement.

- It is an algebraic variety (a set cut out of \mathbb{C}^{n} by polynomial equations)
- Two representations ρ_{1}, ρ_{2} are conjugate or gauge-equivalent if

$$
\rho_{1}(y)=g \rho_{2}(y) g^{-1}
$$

for all $y \in \pi_{K}$ and some $g \in \mathrm{SL}_{2}(\mathbb{C})$.

The character variety

We want to say that conjugate representations are the same:

Definition (Morally correct definition)

The $\mathrm{SL}_{2}(\mathbb{C})$-character variety of a knot K is

$$
\mathfrak{X}(K)=\mathfrak{R}(K) / \text { conjugation }
$$

- $\mathfrak{X}(K)$ captures lots of important geometric and topological information about K.
- One reason: $\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm 1\}$ is the isometry group of hyperbolic 3-space.
- A hyperbolic knot K comes with (two) distinguished point(s) of $\mathfrak{X}(K)$ corresponding to the finite-volume hyperbolic structure.

A technical point

- Taking a naive quotient of $\mathfrak{R}(K)$ gives a badly-behaved space (not separable, etc.) Can fix by setting
$\mathfrak{X}(K)=\operatorname{Spec}($ conjugation-invariant functions on $\mathfrak{R}(K))$
$=\operatorname{Spec}\left(\right.$ characters of $\mathrm{SL}_{2}(\mathbb{C})$ reps of $\left.\pi_{K}\right)$
$=\operatorname{Spec}\left(\right.$ algebra generated by trace functions $\left.\operatorname{tr}_{x}: \rho \mapsto \operatorname{tr} \rho(x)\right)$
hence the name.
- When we do this we throw out indecomposable but reducible ρ. Not usually a big deal: ρ with irreducible image are the most important geometrically.
- If ρ has completely reducible image it factors through the abelianization $H_{1}\left(S^{3} \backslash K\right)$ of π_{K} : good simple examples.

Takeaway on character varieties

A function $f: \mathfrak{X}(K) \rightarrow \mathbb{C}$ is simply a conjugation-invariant function $f: \mathfrak{R}(K) \rightarrow \mathbb{C}$

Holonomy invariants

Definition

A $\mathrm{SL}_{2}(\mathbb{C})$-holonomy invariant F assigns every knot a function

$$
F_{K}: \mathfrak{X}(K) \rightarrow \mathbb{C} .
$$

- Equivalently, a holonomy invariant is a function on pairs $\left(K, \rho: \pi_{K} \rightarrow \mathrm{SL}_{2}(\mathbb{C})\right)$ that depends only on the conjugacy class of ρ.
- Some of our examples use a slight variant (a N-fold cover) of $\mathfrak{X}(K)$
- We can think of $\rho \in \mathfrak{X}(K)$ as the holonomy of a flat $\mathfrak{s l}_{2}$-connection, hence the name.

Examples of holonomy invariants

Torsion

The Reidemeister torsion $\tau(K, \rho)=\tau\left(S^{3} \backslash K, \rho\right)$ depends on K and $\rho \in \mathfrak{R}(K)$. It is gauge-invariant, so we get a function

$$
\tau(K,-): \mathfrak{X}(K) \rightarrow \mathbb{C}
$$

i.e. a holonomy invariant.

Examples of holonomy invariants

Complex volume

The complex volume of a hyperbolic knot

$$
\operatorname{Vol}(K)+i \operatorname{CS}(K) \in \mathbb{C} / i \pi^{2} \mathbb{Z}
$$

can be computed by evaluating a certain characteristic class of flat $\mathrm{PSL}_{2}(\mathbb{C})$-bundles on the finite-volume hyperbolic structure of $S^{3} \backslash K$. We can think of this as a holonomy invariant by evaluating that class on other elements of $\mathfrak{X}(K)$.

The knot group

- K a knot in S^{3}
- $\pi_{K}=\pi_{1}\left(S^{3} \backslash K\right)$ is finitely generated, say by meridians
- All meridians of K are conjugate

Two meridians of the figure-eight knot

Taking the abelian limit

- Before, we mentioned that trivial/abelian reps ρ give ordinary knot invariants.
- Consider the one-dimensional family of representations defined on meridians by

$$
\alpha_{t}(x)=\left[\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right]
$$

Theorem

$$
\begin{aligned}
\tau\left(K, \alpha_{t}\right) & =\nabla_{K}(t) \nabla_{K}\left(t^{-1}\right) \\
& =\nabla_{K}(t)^{2}
\end{aligned}
$$

where ∇_{K} is the Conway potential of K (up to a constant, the Alexander polynomial).

- The α_{t} have abelian image and exist for any knot K.

Taking the abelian limit

Proof.

α_{t} is reducible, so $\tau\left(K, \alpha_{t}\right)$ factors into two pieces. Each factor is an abelianization map on group rings $\mathbb{Z}\left[\pi_{K}\right] \rightarrow \mathbb{Z}[\mathbb{Z}]=\mathbb{Z}\left[t, t^{-1}\right]$. By the usual arguments, this is the abelian Reidemeister torsion/Alexander polynomial.

Takeaway

In general $\mathfrak{X}(K)$ is complicated and depends on K, but for any K $\alpha_{t} \in \mathfrak{X}(K)$. We can evaluate any holonomy invariant on α_{t} to get an easier example.

Examples of quantum holonomy invariants

Some algebra

- Key algebra ingredient: representation theory of \mathcal{U}_{ξ} for $q=\xi=\exp (\pi i / N)$ or $q=\zeta=\exp (2 \pi i / N)$ a root of unity
- The center of \mathcal{U}_{ξ} is birationally equivalent to (a finite cover of) $\mathrm{SL}_{2}(\mathbb{C})$
- In particular there is a family of simple \mathcal{U}_{ξ}-modules indexed by $\mathrm{SL}_{2}(\mathbb{C})$
- Roughly speaking we assign a strand with holonomy $g \in \mathrm{SL}_{2}(\mathbb{C})$ a module with central character g
- More details after some examples

The Kashaev-Reshetikhin invariant

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and Snyder [Che+21] constructed a holonomy invariant.

Fact

For $g \in \mathrm{SL}_{2}(\mathbb{C})$, write χ_{g} for the associated central \mathcal{U}_{ζ}-character and ker χ_{g} the ideal generated by its kernel. $\mathcal{U}_{\zeta} / \operatorname{ker} \chi_{g}$ is a simple bimodule of dimension N^{2}.
(This is not quite right: details later!)

Theorem

By assigning a strand of a knot diagram with holonomy g the module $\mathcal{U}_{\zeta} /$ ker χ_{g}, we get a holonomy invariant $\operatorname{KR}(K, \rho)$ of knots. $\operatorname{KR}(K,-)$ is a rational function on a N-fold cover $\mathfrak{X}_{N}(K)$ of $\mathfrak{X}(K)$.

Extended character variety

- Recall that any two meridians of a knot K are conjugate (if they match orientation)
- For $\rho \in \mathfrak{X}(K)$, eigenvalues of $\rho(x)$ for x a meridian are independent of x
- A fractional eigenvalue of ρ is a μ with $\operatorname{tr} \rho(x)=\mu^{N}+\mu^{-N}$

Definition

Points of $\mathfrak{X}_{N}(K)$ are pairs (ρ, μ) with $\rho \in \mathfrak{X}(K)$ and μ a fractional eigenvalue of ρ.

Immediate that $\mathfrak{X}_{N}(K) \rightarrow \mathfrak{X}(K)$ is an N-fold cover.

The figure-eight knot

$$
K=4_{1}
$$

longitude meridian
$\mathfrak{X}\left(4_{1}\right)=\mathbb{C}\left[M^{ \pm 1}, L^{ \pm 1}\right] /\left\langle(L-1)\left(L^{2} M^{4}\right.\right.$

$$
\left.\left.+L\left(-M^{8}+M^{6}+2 M^{4}+M^{2}-1\right)+M^{4}\right)\right\rangle
$$

$M^{ \pm 1}$ are the eigenvalues of the meridian and $L^{ \pm 1}$ are the eigenvalues of the longitude.
To get $\mathfrak{X}_{N}\left(4_{1}\right)$, replace M with $\mu^{N}=M$

The figure-eight knot

($L-1$) factor is the commutative component and the other is geometric. We compute that, for $N=3$,

$$
\begin{aligned}
\mathrm{KR}(K)_{\text {comm }} & =\left(\mu^{4}+3 \mu^{2}+5+3 \mu^{-2}+\mu^{-4}\right)^{2} \\
\operatorname{KR}(K)_{\text {geom }} & =3\left(\mu^{2}+\mu^{-2}\right)\left(\mu+1+\mu^{-1}\right)^{3}\left(\mu-1+\mu^{-1}\right)^{3}
\end{aligned}
$$

Complete hyperbolic structure of 4_{1} complement corresponds to points $\mu=1, \exp (2 \pi i / 3), \exp (4 \pi i / 3)$ on geometric component.

Observation

$\mathrm{KR}(K)_{\text {geom }}$ vanishes for μ a primitive root of unity. Seems to extend to other knots and odd N for $\zeta=\exp (2 \pi i / N)$; does not occur for $\xi=\exp (\pi i / N)$ and N even.

A-polynomial curve

- $\mathfrak{X}\left(4_{1}\right)$ had two components parametrized by M and L
- In general, $\mathfrak{X}(K)$ could have more components and might not be canonically parametrized by M and L
- Commutative component is always parametrized by M
- Restriction to just M and L gives the A-polynomial curve

Theorem (Dunfield [Dun99])

For hyperbolic K, geometric component of $\mathfrak{X}(K)$ is canonically parametrized by M and L.

Corollary

For hyperbolic $K, \mathrm{KR}(K)$ is a rational function on the commutative and geometric components of the A-polynomial curve.

What about the Jones polynomial?

In the abstract I promised a holonomy invariant extending the colored Jones polynomial. More precisely:

Goal

A holonomy invariant J_{N} such that $\mathrm{J}_{N}(K, \pm 1)$ (the value at the trivial representation) recovers the quantum dilogarithm $\mathrm{J}_{N}(K)$ (colored Jones at a root of unity).

It extends the quantum dilogarithm to $\rho \in \mathfrak{X}_{N}(K)$ with nonabelian image, so we call J_{N} the nonabelian quantum dilogarithm.

Why do we care?

- The modules V_{N} for $q=\exp (\pi i / N)$ are associated to the holonomy sending every meridian to $(-1)^{N+1}$.
- Thus, the volume conjecture is about relating $\mathrm{J}_{N}\left(K, \alpha_{(-1)^{N+1}}\right)$ and hyperbolic volume.
- The value $\mathrm{J}_{N}\left(K, \rho_{\text {hyp }}\right)$ at the complete finite-volume hyperbolic structure should know about the volume
- We might be able to relate their asymptotics via ideas like:
- analytic continuation,
- resurgence,
- AJ conjecture,
- others?

Defining J_{N}

Fact

For each (generic) $g \in \mathrm{SL}_{2}(\mathbb{C})$ there are N irreducible \mathcal{U}_{ξ}-modules $V_{g, \mu}$ parametrized by fractional eigenvalues of g. For $g=(-1)^{N+1}$ and $\mu=\xi^{N-1}$ we recover the module V_{N} defining the colored Jones polynomial.

Theorem (part of my PhD thesis)

There is a holonomy invariant J_{N} assigning $V_{g, \mu}$ to strands. It is well-defined up to a 2 N th root of unity.

This is an extension of work of Blanchet, Geer, Patureau-Mirand, and Reshetikhin [Bla+20]. My improvements are:

- Explicitly computing the braiding matrices
- Working out a more geometric way to describe ρ for link complements

The abelian case

Kashaev's quantum dilogarithm

When $\rho=\alpha_{(-1)^{N+1}}$ is \pm the trivial representation,

$$
\mathrm{J}_{N}\left(K, \alpha_{(-1)^{N+1}}\right)=J_{N}(K)
$$

is the quantum dilogarithm, i.e. the N th colored Jones polynomial evaluated at $\exp (2 \pi i / N)$.

The Akutsu-Deguchi-Ohtsuki invariant

When $\rho=\alpha_{t}$ and $t \neq \pm 1$,

$$
\mathrm{J}_{N}\left(K, \alpha_{t}\right)=\operatorname{ADO}_{N}(t)
$$

is the N th ADO invariant.
The ADO invariant is a higher-order Alexander polynomial. When $N=2$, it is exactly the Conway potential/Alexander polynomial/abelian Reidemeister torsion.

Shaped link diagrams

- In this coordinate system we assign shapes:
- a complex number b_{i} to each segment of a link diagram
- a meridian eigenvalue m_{i} to each link component
- Gives $\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ when they satisfy a certain set of equations
- These are exactly the octahedral gluing equations of Kim, Kim, and Yoon [KKY18].
- Related to an ideal triangulation with four ideal tetrahedra at each crossing

Octahedral decomposition

What is a dilogarithm?

- Can compute complex volume by evaluating a special function called the Rogers dilogarithm on the shape parameters of the tetrahedra
- Kashaev described a matrix analogue called the quantum dilogarithm
- Used it to define a knot invariant which turns out to be the colored Jones at a root of unity (nontrivial to show!)
- The braiding defining J_{N} uses four quantum dilogarithms, one for each tetrahedron

Another holonomy invariant

Quantum hyperbolic invariants

Baseilhac and Benedetti [BB04] constructed quantum hyperbolic invariants of 3-manifolds with links inside them via state-sums and triangulations.

- They used quantum dilogarithms, just like in our construction
- Their invariants appear to be closely related to our nonabelian quantum dilogarithm.
- Our version is much more clearly related to the Jones polynomial
- We can also prove a relation with the torsion:

Relation with the torsion

Theorem (Me [McP21])

For any link L and $\rho \in \mathfrak{X}_{2}(L)$ that does not have 1 as an eigenvalue,

$$
\mathrm{J}_{2}(L, \rho) \mathrm{J}_{2}(\bar{L}, \rho)=\tau\left(S^{3} \backslash L, \rho\right)
$$

where \bar{L} is the mirror image and τ is the Redemeister torsion twisted by ρ.

Proof idea.

There is a Schur-Weyl duality between the braiding for \mathcal{U}_{ξ} defining J_{2} and the twisted Burau representation defining τ. Need to use a "quantum double" to get the norm-square on the left hand side.

Constructing quantum holonomy

 invariants
How to construct them

- I will now give a very rapid overview of some of the algebra used to define these invariants
- Happy to discuss more details if you want to know them!

Holonomy Reshetikhin-Turaev

- Recall that in the RT construction of knot invariants from $\mathcal{U}_{q}=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$, we think about putting a \mathcal{U}_{q}-module V on each strand of the knot K.
- For a pair (K, ρ), each strand has a meridian x and holonomy $\rho(x) \in \mathrm{SL}_{2}(\mathbb{C})$.
- We want to find a family of modules V_{g} parametrized by points of $\mathrm{SL}_{2}(\mathbb{C})$.
- Actual answer is a bit more complicated: let's explain why.

Roots of unity

Recall that for generic q, \mathcal{U}_{q}-modules are essentially indexed by a single integer (the highest weight), just like for ordinary $\mathfrak{s l}_{2}$.
However, for $q=\xi=\exp (\pi i / N)$ a primitive $2 N$ th root of $1, \mathcal{U}_{\xi}$-modules are much more interesting.

Theorem

N-dimensional projective simple \mathcal{U}_{ξ}-modules are indexed by:

1. a (generic) point $g \in S L_{2}(\mathbb{C})$
2. an Nth root μ of an eigenvalue of g

Why?

Central characters

- \mathcal{U}_{q} has generators $E, F, K=q^{H}$ (like $\mathfrak{s l}_{2}$)
- At $q=\xi$, get central subalgebra $\mathcal{Z}_{0}=\mathbb{C}\left[E^{N}, F^{N}, K^{ \pm N}\right]$
- For central characters $\chi: \mathcal{Z}_{0} \rightarrow \mathbb{C}$,

$$
\begin{aligned}
\chi \in \operatorname{Spec} \mathcal{Z}_{0} & \leftrightarrow\left(\left[\begin{array}{cc}
\chi\left(K^{N}\right) & 0 \\
\chi\left(K^{N} F^{N}\right) & 1
\end{array}\right],\left[\begin{array}{ll}
1 & \chi\left(E^{N}\right) \\
0 & \chi\left(K^{N}\right)
\end{array}\right]\right) \\
& \leftrightarrow\left[\begin{array}{cc}
\chi\left(K^{N}\right) & -\chi\left(E^{N}\right) \\
\chi\left(K^{N} F^{N}\right) & \chi\left(K^{N}\right)-\chi\left(K^{N} E^{N} F^{N}\right)
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})
\end{aligned}
$$

- Action of central Casimir Ω given by N th root, full center is $\mathcal{Z}=\mathcal{Z}_{0}[\Omega] /$ (polynomial relation)
- Characters $\chi: \mathcal{Z} \rightarrow \mathbb{C}$ are in bijection with simple \mathcal{U}_{ξ}-modules.

Factorized groups

- \mathcal{U}_{ξ}-modules are really graded by the group $\mathrm{SL}_{2}(\mathbb{C})^{*}$ of pairs

$$
\begin{aligned}
\chi & =\left(\chi^{+}, \chi^{-}\right) \\
& =\left(\left[\begin{array}{ll}
\kappa & 0 \\
\phi & 1
\end{array}\right],\left[\begin{array}{cc}
1 & \epsilon \\
0 & \kappa
\end{array}\right]\right)
\end{aligned}
$$

- This is birationally equivalent to $\mathrm{SL}_{2}(\mathbb{C})$, but not isomorphic as a group.
- Leads to slightly unusual description of π_{K}.
- Usual description (Wirtinger presentation) of knot group from a diagram has one generator for each arc.
- We instead want a groupoid with two generators for each segment.
- Path above a segment labeled by χ gives χ^{+}, path below gives χ^{-}

Fundamental groupoid

The generators associated to segment i

There are relations at each crossing, such as the above

Colored braids

To represent (K, ρ) as a braid closure, decorate segments with characters χ giving holonomies:

The braid action on the χ_{i} is equivalently given by the rules on the previous slide, or by the braiding on \mathcal{U}_{ξ}. It forms a biquandle.

The colored braid groupoid

Just like we have braid groups for braids, we can organize these into a groupoid:

Definition

The $\mathrm{SL}_{2}(\mathbb{C})$-colored braid groupoid $\mathbb{B}_{N}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$ is a category:
objects tuples $\left(\chi_{1}, \ldots, \chi_{n}\right)$ of characters $\chi_{i}: \mathcal{Z}_{0} \rightarrow \mathbb{C}$ morphisms braids $\beta:\left(\chi_{1}, \ldots, \chi_{n}\right) \rightarrow\left(\chi_{1}^{\prime}, \ldots, \chi_{n}^{\prime}\right)$

Closures of colored braids are links L plus $\rho \in \mathfrak{X}(L)$.

Braid groups

The ordinary braid group is the component with $\chi_{1}=\cdots=\chi_{n}=\mathrm{id}$.
(Recall a groupoid with one object is a group.)

Invariants from the braid groupoid

To define a holonomy invariant, we need

1. a functor $\mathcal{F}: \mathbb{B}_{N}\left(\mathrm{SL}_{2}(\mathbb{C})\right) \rightarrow \mathcal{U}_{\xi}-\operatorname{Mod}$ (must satisfy colored Reidemeister moves!)
2. an trace on endomorphisms of \mathcal{U}_{ξ}-Mod

Theorem

Given such an \mathcal{F}, the trace of $\mathcal{F}(\beta)$ is an invariant of the closure (L, ρ) of β.

Getting the trace is trickier than normal because of non-semimplicity: need to use modified dimensions/traces.

Gauge invariance

It turns out that, given such a functor \mathcal{F}, the associated invariant is automatically gauge-invariant! Two pictures explain why:

Here D^{\prime} is gauge-equivalent to D.

Questions?

Bonus: Why is it called a quantum dilogarithm?

The dilogarithm

- The dilogarithm is

$$
L_{2}(x)=-\int_{0}^{x} \frac{\log (1-z)}{z} d z
$$

and Rogers' dilogarithm is

$$
L(x)=L_{2}(x)+\log (1-x) \log (x) / 2 .
$$

$L(x)$ can be used to compute complex volumes of tetrahedra, hence of manifolds.

- It satisfies the 5-term relation

$$
L(x)+L(y)-L(x y)=L\left(\frac{x-x y}{1-x y}\right)+L\left(\frac{y-x y}{1-x y}\right)
$$

which is related to the 3-2 move on triangulations

The quantum dilogarithm

- Faddeev and Kashaev showed the q-series

$$
\Psi(x)=\prod_{n=1}^{\infty}\left(1-x q^{n}\right)
$$

is a q-analog of $L(x)$ and satisfies a noncommutative 5-term relation.

- The cyclic quantum dilogarithm

$$
L(B, A \mid n)=\prod_{k=1}^{n}\left(1-\xi^{2 k} B\right) / A
$$

for $A^{N}+B^{N}=1$ is a root-of-unity analogue of $\Psi(x)$.

Link invariants from the quantum dilogarithm

- By taking a certain singular limit Kashaev defined his quantum dilogarithm invariant.
- By replacing Rogers dilogarithms $L(x)$ with cyclic dilogarithms $L(B, A \mid n)$, Baseilhac and Benedetti defined holonomy invariants B_{N} for triangulated 3-manifolds with links inside them.
- B_{N} is constructed as a state-sum, with one function $L(B, A \mid n)$ for each tetrahedron.

The nonabelian quantum dilogarithm

- Even though the definition of J_{N} appears quite different from B_{N}, recent computations of the braiding show they are closely related.
- In particular, the braiding defined by \mathcal{J}_{N} factors into a product of four linear maps, each of which is associated to a tetrahedron in the octahedral decomposition of the knot complement.
- To emphasize the connection with Kashaev's construction and the incorporation of nonabelian $\rho \in \mathfrak{X}_{N}(K)$, we used the name nonabelian quantum dilogarithm.

The nonabelian quantum dilogarithm and the torsion

An explicit relationship

Theorem (C. [McP21])

For any $\rho \in \mathfrak{X}_{2}(K)$,

$$
\mathrm{J}_{2}(K, \rho) \mathrm{J}_{2}(\bar{K}, \rho)=\tau(K, \rho)
$$

where \bar{K} is the mirror image of K.
Comparing

$$
\nabla_{K}(t) \nabla_{\bar{K}}(t)=\tau\left(K, \alpha_{t}\right)
$$

we think of $\mathrm{J}_{2}(K, \rho)$ as a nonabelian Conway potential. How do we compute the right-hand side? Use the Burau representation.

The Burau representation

Consider colored braids on b strands. Write $\rho=\left(\chi_{1}, \ldots, \chi_{b}\right)$ for an object of $\mathbb{B}_{2}\left(\mathrm{SL}_{2}(\mathbb{C})\right.$), equivalently a representation

$$
\rho: \pi_{1}\left(D_{b}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})
$$

where D_{b} is a b-punctured disc. Let β be a braid on b stands, i.e. an element of $\operatorname{Map}\left(D_{b}, \partial D_{b}\right)$. As a colored braid, it becomes a morphism $\beta: \rho \rightarrow \rho^{\prime}$.

Definition

The Burau representation is the action on twisted locally-finite homology:

$$
\mathcal{B}(\beta): \mathrm{H}_{1}\left(D_{b} ; \rho\right) \rightarrow \mathrm{H}_{1}\left(D_{b} ; \rho^{\prime}\right)
$$

induced by the action of β on D_{b}.

Computing the torsion

Proposition

If (K, ρ) is the closure of β, then

$$
\tau(K, \rho)=\frac{\operatorname{det}(1-\mathcal{B}(\beta))}{\operatorname{det}(1-\rho(y))}
$$

y is a path around every strand, as above.

Determinant to trace

To make this a trace, let $\bigwedge \mathcal{B}$ be the action on the exterior algebra of homology. Then

$$
\operatorname{str}(\bigwedge \mathcal{B}(\beta))=\operatorname{det}(1-\mathcal{B}(\beta))
$$

Here str is the $\mathbb{Z} / 2$-graded trace: multiply action on degree k part by $(-1)^{k}$.

Multiplicity spaces

We want to understand $\mathcal{J}_{2}(\beta): \mathcal{J}_{2}(\rho) \rightarrow \mathcal{J}_{2}(\rho), \rho=\left(\chi_{1}, \ldots, \chi_{b}\right)$. First we need to understand $\mathcal{J}_{2}(\rho)$. Use:

Proposition

$$
\mathcal{J}_{2}(\rho)=\bigotimes_{i=1}^{b} V_{\chi_{i}} \cong X^{+} \otimes_{\mathbb{C}} V_{\chi_{+}} \oplus X^{-} \otimes_{\mathbb{C}} V_{\chi_{-}}
$$

Here:

- $\chi_{ \pm}$are characters corresponding to the total holonomy $\rho(y)$
- there are two because there are two choices $\pm \mu$ of fractional eigenvalue for $\rho(y)$
- Action of $\mathcal{J}_{2}(\beta)$ factors through multiplicity spaces $X^{ \pm}$

Schur-Weyl duality

Theorem (Me [McP21])

There is a subalgebra \mathfrak{C}_{b} of $\mathcal{U}_{\xi}^{\otimes b}$ that

1. (super)commutes with the image of $\Delta \mathcal{U}$ in the tensor power,
2. is isomorphic as a vector space to $\wedge \mathcal{B}\left(\chi_{1}, \ldots, \chi_{b}\right)$,
3. such that the braid group action on $\mathfrak{C}_{b} \subseteq \mathcal{U}_{\xi}^{\otimes b}$ agrees with \mathcal{B}.

Compare Schur-Weyl duality between tensor powers of SL_{n} and the symmetric group.

Computing J_{2}

Corollary (Wrong)

The $\mathbb{Z} / 2$-graded multiplicity space $X=X^{+} \oplus X^{-}$is isomorphic to $\wedge \mathcal{B}(\rho)$. This is compatible with the braid action, so $\mathcal{J}_{2}(\beta)$ acts on X by $\wedge \mathcal{B}(\beta)$.

The theorem about $\tau(K, \rho)$ would follow immediately, except that this is false!

Fixing the idea

- The problem is that \mathfrak{C}_{b} does not act faithfully on $\mathcal{J}_{2}\left(\chi_{1}, \ldots, \chi_{n}\right)$.
- Among other reasons, dimensions don't match.
- To fix, consider a "quantum double"

$$
\mathcal{T}_{2}=\mathcal{J}_{2} \boxtimes \overline{\mathcal{J}}_{2}
$$

- Then the theorem works and

$$
\begin{aligned}
\tau(K, \rho) & =\mathrm{T}_{2}(K, \rho) & & \text { (by Schur-Weyl) } \\
& =\mathrm{J}_{2}(K, \rho) \mathrm{J}_{2}(\bar{K}, \rho) & & \text { (by definition) }
\end{aligned}
$$

References

Stéphane Baseilhac and Riccardo Benedetti. "Quantum hyperbolic invariants of 3 -manifolds with PSL(2, C)-characters". In: Topology 43.6 (Nov. 2004), pp. 1373-1423. DOI: 10.1016/j.top.2004.02.001. arXiv: math/0306280 [math.GT].
[Bla+20] Christian Blanchet, Nathan Geer, Bertrand Patureau-Mirand, and Nicolai Reshetikhin. "Holonomy braidings, biquandles and quantum invariants of links with $\mathrm{SL}_{2}(\mathbb{C})$ flat connections". In: Selecta Mathematica 26.2 (Mar. 2020). Doi:
10.1007/s00029-020-0545-0. arXiv: 1806.02787v1 [math.GT].
[Che+21] Kai-Chieh Chen, Calvin McPhail-Snyder, Scott Morrison, and Noah Snyder. Kashaev-Reshetikhin Invariants of Links. Aug. 14, 2021. arXiv: 2108.06561 [math. GT].
[Dun99] Nathan M. Dunfield. "Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds".

In: Invent. Math. 136.3 (1999), pp. 623-657. ISSN: 0020-9910. DOI: 10.1007/s002220050321.
[Kas97] Rinat M Kashaev. "The hyperbolic volume of knots from the quantum dilogarithm". In: Letters in mathematical physics 39.3 (1997), pp. 269-275. arXiv: q-alg/9601025 [math. QA].
[KKY18] Hyuk Kim, Seonhwa Kim, and Seokbeom Yoon. "Octahedral developing of knot complement I: Pseudo-hyperbolic structure". In: Geometriae Dedicata 197.1 (Jan. 2018), pp. 123-172. DOI: 10.1007/s10711-018-0323-8. arXiv: 1612.02928 [math.GT].
[KR05] R. Kashaev and N. Reshetikhin. "Invariants of tangles with flat connections in their complements". In: Graphs and Patterns in Mathematics and Theoretical Physics. American Mathematical Society, 2005, pp. 151-172. DOI:
10.1090/pspum/073/2131015. arXiv: 1008.1384 [math. QA].
[McP21] Calvin McPhail-Snyder. "Holonomy invariants of links and nonabelian Reidemeister torsion". In: Quantum Topology (2021). arXiv: 2005.01133 [math. QA]. Forthcoming.
[MM01] Hitoshi Murakami and Jun Murakami. "The colored Jones polynomials and the simplicial volume of a knot". In: Acta Mathematica 186.1 (Mar. 2001), pp. 85-104. Doi:
10.1007/bf02392716. arXiv: math/9905075 [math.GT].

